Tracking Extrema in Dynamic Environments

نویسنده

  • Peter J. Angeline
چکیده

Abstract. Typical applications of evolutionary optimization involve the off-line approximation of extrema of static multi-modal functions. Methods which use a variety of techniques to self-adapt mutation parameters have been shown to be more successful than methods which do not use self-adaptation. For dynamic functions, the interest is not to obtain the extrema but to follow it as closely as possible. This paper compares the on-line extrema tracking performance of an evolutionary program without self-adaptation against an evolutionary program using a self-adaptive Gaussian update rule over a number of dynamics applied to a simple static function. The experiments demonstrate that for some dynamic functions, self-adaptation is effective while for others it is detrimental. Typical applications of evolutionary optimization involve the off-line approximation of extrema of static multi-modal functions. Methods which use a variety of techniques to self-adapt mutation parameters have been shown to be more successful than methods which do not use self-adaptation. For dynamic functions, the interest is not to obtain the extrema but to follow it as closely as possible. This paper compares the on-line extrema tracking performance of an evolutionary program without self-adaptation against an evolutionary program using a self-adaptive Gaussian update rule over a number of dynamics applied to a simple static function. The experiments demonstrate that for some dynamic functions, self-adaptation is effective while for others it is detrimental.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields

Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...

متن کامل

Tracking Extrema in Dynamic Environment using Multi-Swarm Cellular PSO with Local Search

Many real-world phenomena can be modelled as dynamic optimization problems. In such cases, the environment problem changes dynamically and therefore, conventional methods are not capable of dealing with such problems. In this paper, a novel multi-swarm cellular particle swarm optimization algorithm is proposed by clustering and local search. In the proposed algorithm, the search space is partit...

متن کامل

Tracking Extrema in Dynamic Environments Using a Learning Automata-Based Immune Algorithm

In recent years, bio-inspired algorithms have increasingly been used by researchers for solving various optimization problems increasingly. Many real world problems are mostly time varying optimization problems, which require special mechanisms for detecting changes in environment and then responding to them. The present paper has been proposed to combination the learning automata and artificia...

متن کامل

Tracking Changing Extrema with Particle Swarm Optimizer

The modification of the Particle Swarm Optimizer has been shown to be effective in locating a changing extrema. In this paper we investigate the effectiveness of the modified PSO in tracking changing extrema over time. We demonstrate that a modified PSO is reliable and accurate in tracking a continuously changing solution.

متن کامل

Microsoft Word - Ramos-NIAS06.DOC

In order to overcome difficult dynamic optimization and environment extrema tracking problems, we propose a Self-Regulated Swarm (SRS) algorithm which hybridizes the advantageous characteristics of Swarm Intelligence as the emergence of a societal environmental memory or cognitive map via collective pheromone laying in the landscape (properly balancing the exploration/exploitation nature of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997